If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-280x+2500=0
a = 3; b = -280; c = +2500;
Δ = b2-4ac
Δ = -2802-4·3·2500
Δ = 48400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{48400}=220$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-280)-220}{2*3}=\frac{60}{6} =10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-280)+220}{2*3}=\frac{500}{6} =83+1/3 $
| 24x=17 | | 4^x-1=32^x+2 | | -2=-10x+14 | | -2=4x+7=-6 | | 168=18(x)+12(2x) | | -6=-5x+3 | | 14+9u=11u | | (x^2-7x+10)*(x^2+x-12)=0 | | 6v+8=-6-6v | | -3=1/4x-5 | | 45g=9 | | 8x-18=-38 | | 1.2x-0.91=0.8x=2.29 | | Q.2x-0.91=0.8x=2.29 | | 2-3n-n=1 | | 3/4x-21=8 | | -3n+4+4n=- | | X=17x^2+3x | | 42+13x-5=2x+8=180 | | 58-(2c+)=4(c+5)+c | | 6(x)-11=37 | | Z=5x9 | | -x+12=-45 | | 1/2(x+8)-6=30 | | 47+-2x=33 | | 6x-10=5x-10 | | 30x+50=30x+49 | | 2x^2+30x-87.5=0 | | 5x+6-2x-9=30 | | y=3/4+9 | | 2x^2+30x+100+87.5=0 | | x-6+8=13 |